Synthesis of Novel C₂-Symmetric Chiral Polyamide Macrocycles Containing Pyridyl Side-arm

Xiao CHEN, Da Ming DU, Wen Ting HUA*

The key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry & Molecular Engineering, Peking University, Beijing 100871

Abstract: Three novel C_2 -symmetric macrocycles containing pyridyl units have been prepared by the cyclic condensation of chiral diamide intermediates with 2,6-pyridinedicarbonyl dichloride in highly diluted solution at room temperature.

Keywords: Synthesis, macrocycles, chiral, pyridine.

The design and synthesis of different kinds of synthetic macrocycles and studies on molecular recognition, stereoselective catalysis and specific photoelectric property have been one focus in the fields of life science and material science¹⁻³. Among them, optical active macrocycles as receptors for enantioselective recognition have particularly attracted much attention⁴.

Here, we describe the synthesis of three chiral macrocycles **4-6**, which have C_2 -symmetry axis and their chirality comes from *L*-amino acids derivatives. Pyridine units as building blocks are incorporated into the ring structure and side-arm, not only providing proton acceptor at the pyridyl nitrogen but also bringing rigidity into the ring. All the structural characteristics make macrocycles offer a chiral environment for selectively binding guest organic compounds.

The synthesis of macrocycles **4-6** was shown in **Scheme 1.** The tosylamine was transformed into sodium salt, then reacted with 2,6-bis(bromomethyl)pyridine to give compound **1**. Followed detosylation in concentrated H₂SO₄, the desired 2, 6-bis(N -picolylaminomethyl)pyridine **2** was condensed with Z-valine in the presence of DCC to give compound **3**. It should be noticeable that Z-valine must be mixed with DCC for 0.5 h to form symmetric anhydride before the addition of compound **2** to the mixture. Subsequently, compound **3** was deprotected in 33% HBr-HAc, and then the obtained diamine dihydrobromide was condensed with 2, 6-pyridinedicarbonyl dichloride in highly diluted solution (10^{-3} mol/L) at room temperature for 12 h under the existence of Et₃N. After separation by silica gel column chromatography with the eluent (CHCl₃: MeOH = 30:1), three new chiral macrocycles **4**, **5**, **6** were obtained in yields of 15.6%, 5.1% and 3.7%, which were the products of [1+1], [2+2] and [3+3] cyclization

^{*}E-mail: huawt@pku.edu.cn

Xiao CHEN et al.

respectively. To our knowledge, the product **6** as a 54-membered macrocycle was seldom reported previously. The structures of the new chiral macrocycles were confirmed by a combination of ¹HNMR, MS, IR and elemental analysis⁵.

Scheme 1 Synthetic route of macrocycles

References

- J. Breitenbach, J. Boosfeld, F. Vogtle, *Comprehensive Supramolecular Chemistry*, F. Vogtle, Ed. Elsevier Science, **1996**, *vol. 2*, 29
- 2. T. H. Webb, C. S. Wilcox, Chem. Soc. Rev., 1993, 22 (6), 383
- 3. S. Kobayashi, T. Hamada, S. Nagayama, K. Manabe, Org. Lett., 2001, 3 (2), 165
- 4. H. W. Zhao, W. T. Hua, J. Org. chem., 2000, 65, 2933
- 5. Spectral data for compounds **4-6**: **4**: mp.150-151⁰C, $[\alpha]_{20}^{20} = -104.32$ (c 1.1, CHCl₃); FABMS: m/z = 649 (M+H)⁺; IR (KBr, v, cm⁻¹): 3452, 2926, 1669, 1593, 1437, 1323, 1220; ¹HNMR (CDCl₃): δ 8.16 (d, 2H, J = 0.011), 8.05(d, 2H, J = 0.019), 7.90 (t, 1H, J = 0.019), 7.67 (t, 2H, J = 0.019), 7.36 (m, 2H), 7.19 (m, 2H), 6.56 (m, 3H), 5.71 (d, 2H, J = 0.038), 4.92-4.09 (m, 8H), 2.57 (m, 2H), 0.98 (d, 12H, J = 0.017); Anal. Calcd.(%) for C₃₆H₄₀N₈O₄: C, 66.65; H, 6.21; N, 17.27, Found: C, 66.47; H, 6.23; N, 17.13. **5**: mp.136-138⁰C, $[\alpha]_{20}^{20} =$ +7.87 (c 2.7, CHCl₃); FABMS: m/z = 1297 (M+H)⁺; IR (KBr, v, cm⁻¹): 3455, 2966, 2352, 1645, 1523, 1434, 1330, 1173; ¹HNMR (CDCl₃): δ 8.53-7.00 (m, 28H), 5.29-4.03 (m, 20H), 2.37 (m, 4H), 1.01 (m, 24H); Anal. Calcd.(%) for C₇₂H₈₀N₁₆O₈·H₂O: C, 65.73; H, 6.28; N, 17.04, Found: C, 65.59; H, 6.31; N, 17.02. **6**: mp.134-136⁰C, $[\alpha]_{20}^{20} = +23.9$ (c 1.1, CHCl₃); MS(MALDI-TOF): m/z = 1945 (M+H)⁺; IR (KBr, v, cm⁻¹): 3470, 2966, 1641, 1525, 1432, 1330, 1212, 1170; ¹H NMR (CDCl₃): δ 8.52-7.09 (m, 42H), 5.13-4.10 (m, 30H), 2.27 (m, 6H), 0.95 (m, 36H); Anal. Calcd.(%) for C₁₀₈H₁₂₀N₂₄O₁₂·1.5H₂O: C, 65.74; H, 6.28; N, 17.04, Found: C, 65.67; H, 6.26; N, 16.98.

Received 25 January, 2002